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Abstract—In this paper, a framework for lane merge co-
ordination is presented utilising a centralised system, for con-
nected vehicles. The delivery of trajectory recommendations
to the connected vehicles on the road is based on a Traffic
Orchestrator and a Data Fusion as the main components. Deep
Reinforcement Learning and data analysis is used to predict
trajectory recommendations for connected vehicles, taking into
account unconnected vehicles for those suggestions. The results
highlight the adaptability of the Traffic Orchestrator, when em-
ploying Dueling Deep Q-Network in an unseen real world merging
scenario. A performance comparison of different reinforcement
learning models and evaluation against Key Performance Indi-
cator (KPI) are also presented.

Index Terms—Lane merge, intelligent transport system, V2X
communications, edge cloud, reinforcement learning, machine
learning.

I. INTRODUCTION

Intelligent Transport System (ITS) enables the generation
of extensive and detailed data relating to vehicles in addi-
tion to the environment of their operation. This data can
be used to generate meaningful information to provide a
better transportation experience. Associations such as the
European Telecommunications Standards Institute (ETSI) and
5G Automotive Association (5GAA) have promoted the use of
cellular Vehicle-to-Everything (V2X) communications in order
to enhance road safety, traffic efficiency, reduce environmental
issues and energy costs [1]. A connected vehicle is capable of
transmitting and receiving information to increase the con-
sciousness and recognition of a driving agent. The necessary
data can be transmitted using Vehicle-to-Vehicle and Vehicle-
to-Network communications to a central system for manoeuvre
generation, traffic analysis and many other use cases. Due to
the advancements in 5th Generation Mobile Network (5G) and
V2X, there are many use cases that are under research and
development [2]: automated overtake, co-operative collision
avoidance, high density platooning and lane merging.

In this paper, we focus on a lane merging scenario involving
a vehicle merging onto a carriageway between a following and
preceding vehicle. A coordination model utilising a centralised
system is presented and analysed. The platform delivers
trajectory recommendations to connected vehicles through
the use of Reinforcement Learning (RL), accounting for all
surrounding vehicles (i.e., connected and unconnected). Time-

critical variables including location, speed and acceleration
are used as input variables to the deep reinforcement learning
model. Furthermore, various approaches to RL algorithms are
evaluated to ascertain whether a merging vehicle can execute a
manoeuvre safely, accompanied with the optimal model tested
on real connected vehicles on a test track. The contributions
presented in this paper include:

• A Traffic Orchestrator (TO) model based on a centralised
system, that delivers trajectory recommendations to con-
nected vehicles.

• Performance evaluation of different reinforcement learn-
ing approaches, when assessed in a real lane merge
scenario.

• A Data Fusion (DF) model that synergies the centralised
micro service oriented architecture, delivering descriptors
of connected and unconnected vehicles to the TO.

Two different algorithms written in Pytorch [3] are pre-
sented in this work and thoroughly explored: Deep Q-Network
(DQN) and Dueling Deep Q-Network (Dueling DQN). The
Dueling DQN showed the most optimal results, providing
human-like trajectories with very low bias. The inter vehicle
distance, acceleration, individual positions and manoeuvre dis-
tance in trajectory recommendation are evaluated extensively
to deduce the performance of incorporating such model.

The remainder of this paper is organised in the following
way. Section II provides a state of the art and Section III
presents the architecture of the system model. The analysis
of the the deep reinforcement learning algorithms is explored
in section IV on the data-set it was trained on as well as
a real world scenario with the accompanying communication
results. Finally, we draw conclusions and present future works
in Section V.

II. STATE OF THE ART

Using machine learning is by no means a new approach
to tackle lane merge prediction. An approach presented in [4],
utilised a representation of the on-road environment (Dynamic
Probabilistic Drivability Map). The automotive test bed in-
cluded cameras, radars and lidar sensing delivering cost effec-
tive recommendations based on dynamic programming. The
theoretical formulation of this work was tested with data from
40 real-world merges. Although the approach is considered
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early stage. In [5], the authors consider a transition stage
in the path to fully autonomous transportation, with mixed-
autonomy driving. The mixed-autonomy driving is considered
as a collaboration of vehicles adopting a Nash Equilibrium
state, to ensure that the collective reward for lane merging
is optimal. The approach simulated the role of a driver via
a keyboard. In [6], a work-in-progress for an on-ramp merge
driving policy using Long Short-Term Memeory (LSTM) ar-
chitecture with Deep Q-Learning was presented. The scenario
considers an on-ramp merging involving three vehicles: the
merging vehicle and two vehicles on the mainline. A total
of 9 variables are used: for the merging vehicle, 5 variables
describe its driving state (speed, position, heading angle, and
distances to the right and left lane). For the other two vehicles,
only speeds and positions are known. The algorithm has not
been verified or validated. A deep RL approach was adopted
in [7], handling input values from camera and laser sensor the
vehicle owns with an embedded GPU for decision making.
The work also proposes a monolith architecture embedded in
the vehicle, and does not consider a micro service approach
in which the connected and unconnected vehicles can co-
exist in the same scenario. Lastly, every vehicle that includes
the equipment specified would have to generate the calcu-
lations multiple times, making it more costly albeit running
in real-time. Research has also been carried out about the
functionality and challenges of incorporating Deep Learning
into vehicles. Work in [8] discusses the strict assessment that
needs to be undertaken before the use of Deep Learning can
be considered and commercialised in autonomous vehicles.
Challenges included dataset completeness, Neural Network
implementation and the transfer of learning. These challenges
remain to this day and are great hurdles when designing and
implementing a Deep Learning approach for vehicles. It is
clear that reproducing similar results in different environments
from research papers seldom work. Both intrinsic (e.g. hyper-
parameters) and extrinsic factors (e.g. environment) influence
the performance of the agent albeit using the same approach
that papers have undertaken. Therefore, suggesting that the
use of RL is experimental and relative to the scenario that the
agent operates as also seen by work presented in [9].

III. ARCHITECTURE AND SYSTEM MODEL

A. Lane merge coordination

The lane merge scenario examined in this work is depicted
in Fig. 1. A connected vehicle will attempt to merge onto
a main lane where connected and unconnected vehicles are
present. Through an edge-cloud approach, bespoke trajectory
recommendations are determined and sent by central coor-
dination mechanism to connected vehicles. This proposed
architecture brings by the ability to aggregate data for various
algorithms that are part of the lane merge proactively, simul-
taneously being able to react to sudden road changes. The
proposed architecture further allows for easy scalability with
respect to coordination of vehicles. Five distinct components
facilitate the lane merge coordination: a Vehicle-to-Everything

V2X-GatewayImage Recognition

Data Fusion

Camera

GDM
Traffic 

Orchestrator

5G 
Network

Fig. 1. Lane merge coordination scenario.

(V2X Gateway), an Image recognition system, a Global Dy-
namic Map (GDM), a DF and a TO.

The V2X Gateway is responsible for forwarding messages
to the various applications and interfaces in the architecture.
The V2X Gateway acts as a communication medium that
connects the interfaces and applications to connected vehicles
based on a message exchanging approach. This method of
communication occurs across a mobile network. Applications
must subscribe to the V2X Gateway to receive messages about
vehicular features and trajectory information. The mobile
network seeks to maintain a set of baseline requirements. The
up-link per vehicle should be, at least, 320kbps. Furthermore,
the down-link per vehicle should be, at least, 4.7Mbps. The
end-to-end latency requirement should not exceed 30ms.

An Image recognition system [10] collects information
about all the vehicles on the road in a specified area. This
information includes the localisation and trajectory-based pa-
rameters attributed to a specific road user, given by a Road
User Description (RUD). Information about connected and
unconnected vehicles are collected and processed sending all
the information to the V2X Gateway, which in turn forwards
the messages to the GDM. The GDM stores environmen-
tal information about connected and unconnected vehicles
in a database. This information is delivered from the V2X
Gateway system. The GDM ensures that stored RUDs are
up to date. The DF provides a synchronisation mechanism
for RUDs originating from different sources (e.g., one from
the Image recognition system and a connected vehicle in a
closely localised time frame, respectively). The DF sends the
information to applications that are subscribed to a specific
location boundary. Additionally, it includes the monitoring and
evaluation platform to assess communication KPIs.

The TO will store and process environmental factors about
connected and unconnected vehicles to give rise to trajectories
for connected vehicles. The TO needs to consider time-critical
variables such as the timestamp of the vehicle location, the



speed of the vehicle and the vehicle-specific dimensions. Once
the TO provides a coordinated trajectory recommendation for
a single or set of road users, which will then be sent to the V2X
Gateway forwarding them to the connected vehicles. The con-
nected vehicles have the choice to either accept, reject or abort
the recommendation. This feedback information is supplied by
the connected vehicles to the V2X Gateway. The feedback can
be used to recalculate trajectory recommendations.

Unconnected vehicles are not able to communicate with
the TO and they cannot interpret or use trajectory recom-
mendations. However the lane merge coordination is aware
of unconnected vehicles by means of the Image recognition
system. This Image recognition system provides the GDM
with the RUDs to be stored. The road user information will be
requested by the TO to create trajectory recommendations. To
this end, a set of messages need to be defined for communi-
cating all the components within the lane merge coordination.
Messages used in the communication will employ a com-
mon message formatting based on JavaScript Object Notation
(JSON). This allows to communicate human-readable text, that
can be received and processed in any software component.

The novelty of the the TO stems from the greater ability
to generalise to different lane merge scenarios as a result
of incorporating deep learning models. The TO architecture
is uniquely minimal, relying on the lower levels of the
architecture e.g. Image recognition to provide status of the
road and vehicles. This places a deeper focus on optimisation
of computational and time resources with regards to the TO
aspect. In this paper, we focus on the design, implementation
and evaluation of the TO and the DF. The model in Fig. 1
was implemented using the Image recognition system from
[10] and for the GDM, the V2X-Gateway and the 5G Network
the work from [11] was used.

B. Traffic Orchestrator

The TO must demonstrate a level of safety concern and
overall reliability as delved in [12]. The proposed architecture
for the TO system is presented in Fig. 2. The main purpose
of the Detection Interface is to, receiving any data being sent,
over a Transmission Control Protocol (TCP) connection, from
the V2X Gateway. The Detection Interface also acts as an
intermediate filter that will read JSON strings and process the
JSON messages into more compact and efficient structure to
be used by the TO. Similarly, the Network Interface will act
as a filter that will convert and translate information within
the TO, to JSON messages to be fed into the V2X Gateway.

A Knowledge Base has been designed to store the in-
formation sent to the TO.Where up-to-date RUDs, is main-
tained to guarantee that a manoeuvre recommendation is
calculated based on all current road-environment knowledge.
The Knowledge Base, mimics the access and modification
functions of a typical database containing only the RUDs
that the GDM has most recently transmitted as rows. The
knowledge base is able to insert and remove RUD to represent
the most recent environmental snapshot. It also provides access
to RUDs being stored in order to query certain conditions

and provide manoeuvre recommendations providing a search
function allowing the retrieval of a RUD by their Universally
Unique Identifier (UUID).

The Exchange Interface has been designed to have two
responsibilities: execute the TO application and mediate the
flow of information across all interfaces in the TO. The
Exchange Interface takes structured data from the Detection
Interface and appropriately forms the data into entities. These
entities can then be reused throughout the rest of the system in
a consistent manner. This component directly interfaces with
the Knowledge Base and will collect structured RUDs. Another
functionality of the Exchange Interface is to provide access for
consistent communication methods, allowing different learning
algorithms to run on the TO. There are two major design
factors with respect to a trajectory recommendation: 1) Safety
distance from all cars on the highway; this is to ensure that
the cars keep the safety breaking distance at all times, 2)
Positioning and acceleration values of the connected vehicle in
comparison with the values of all other vehicles on the road.
Therefore, the motivation of the TO, is to provide positional
coordinates as well as acceleration and speed values to the
connected vehicle to give a path to follow for a merge. The
TO passes instructions to other connected vehicles creating a
multi-agent solution that benefits the interest of every vehicle
on the road. In order for the TO to communicate with the
other components in the stack, a containerisation approach is
adopted ensuring, cross platform compatibility and the ability
to communicate with ease.

The RL models utilise two different data-sets collected by
the Federal Highway Administration Research and Technology
- Coordinating, Developing, and Delivering Highway Trans-
portation Innovations, on two American motorways: Interstate
80 Freeway (I−80) and US−101. Both models require coor-
dinates, speed, acceleration, heading and size of 3 vehicles as
input variables. The three vehicles correspond to the merging,
preceding and following vehicle. The reward function have
been designed to take into account the inverse distance to the
merging point (position that conforms to safety measures and
is in between the preceding and following vehicle), inverse of
speed and acceleration. This is to ensure, a steady lane merge.
The negative reward reflects the positive reward albeit with
a negative sign. The actions permitted by the RL model are:
accelerate, decelerate, turn right, turn left and do nothing.

C. Data Fusion

The DF is responsible for updating the GDM data with the
latest road user descriptions and avoids having a duplicated
road user coming directly from connected vehicles and from
the Image recognition system. It is also responsible for enhanc-
ing the RUDs accuracy by combining most accurate values
from each source, i.e the acceleration from the camera system
is less precise than the one provided by the connected vehicles.
The DF consists of four different components: the Network
Interface is responsible for interacting with other components.
It receives RUDs from the V2X Gateway, deserialises the mes-
sages and forwards them to the Data Synchronisation. It also
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Fig. 2. Proposed TO architecture.

handles the fused and corrected descriptions from the Data
Association, serialises and sends them to the GDM. It receives
RUDs from the V2X Gateway, deserialises the messages and
forwards them to the Data Synchronisation. The DF also
receives the fused and corrected descriptions from the Data
Association, serialises and sends them to the GDM. The Data
Synchronisation aims to synchronise received RUD in time.
It collects all received descriptions during a certain period
(100ms) and then extrapolates each one to the same temporal
reference. Given that the period is small considering the speed
of the objects a uniformly accelerated rectilinear motion was
found sufficient. It updates the coordinates of each object and
its timestamp. The Data Association matches objects detected
by the camera system with connected vehicles. For each object
detected by the camera system it first checks if the object is
already matched with another object in the Fusion History
Map. Then, it raises or lowers the confidence according to the
Euclidean distance and the angle between them. The Fusion
History Map stores the history of matched objects. For each
matched objects it stores the following information: last seen
timestamp, camera detected UUID, connected vehicles UUID,
confidence level. The history map is cleaned every few seconds
based on the last seen timestamp.

D. KPI Evaluation Platform and Micro-Services Manager

The aim of the KPI Evaluation Platform is firstly to ease
monitoring the overall system in real time by aggregating every
component logs in a single and easy to search platform and
secondly evaluate software and network KPIs, for example
delays and reliability. The platform consists of three compo-

nents: The collector receives logs from different components
by exposing a network interface. The received messages are
parsed, formatted and enriched before forwarding them to the
database. The database is used to store the messages gathered
by the collector and offers a query language to explore the data
and compute KPIs. The data visualisation is a GUI that allows
users to monitor the database data in real time. It offers the
ability to explore raw data and to create charts and dashboards.

The Elastic stack is a set of well integrated open source
components designed for this purpose with Logstash for data
collection, Elasticsearch to store and query data and Kibana
for visualisation. The Micro-Services Manager enables con-
nectivity among independent components in a scalable solu-
tion, providing a central logging system for all the components
that can be monitored for further manipulation and analysis.

IV. RESULTS

To analyse the effectiveness of the lane merge coordination,
this section focuses on two integral testing phases: a perfor-
mance evaluation of the RL models and a set of real world
tests using connected vehicles. The purpose of the performance
evaluation is to determine the optimal RL model to be used for
the TO on real tests. In the real world tests, the TO is predicting
live trajectory recommendations to connected vehicles.

A. Performance Evaluation Tests

Two different RL models (i.e, DQN and Dueling DQN)
were trained using the data-set described in section III. This
data-set was split into 3 subsets: training, testing and validation
where each of them with 70%, 20% and 10% of the size of



(a) Negative Rewards (b) Positive Rewards

Fig. 3. Histogram for comparing assigned rewards for trajectory recommendation by DQN agent.

(a) Negative Rewards (b) Positive Rewards

Fig. 4. Histogram for comparing assigned rewards for trajectory recommendation by Dueling DQN agent.

the original data-set respectively. The training subset contains
105 merging instances where each merging instance is ap-
proximately 70 data points that represent a merging scenario.
The merging scenarios are randomly selected from the data-
set, but the data points are iterated over chronologically to
provide a logical merging instance. The model predicts and
allocates a trajectory recommendation to connected vehicles
for a successful merge. The validation subset was used to
tune the model hyper parameters (i.e., model layer number
and size), as well as physics for the Newtonian actions. The
performance evaluation tests were carried out on the test data
subset, to ascertain its performance on merging instances it
has never encountered before.

Fig. 3 and 4, highlight the count of positive and negative
rewards assigned for each way-point in a trajectory recom-
mendation during training time of the model. The reward
function (positive/negative) used to assign rewards directly
impact the success of the trajectory recommendation. Both the
models that reinforce the agent with negative rewards follow
the same general shape seen in Fig. 3a and Fig. 4a, where there
is an inverse proportional relation between the magnitude of
the rewards and the reward the trajectory obtained, until the
model reaches a successful merge obtaining a reward of 0
where the density increases greatly, indicating a converged
model. The density of rewards obtained at 0 is 173 by the
Dueling DQN compared to 153 for DQN. On the other hand,
the positive reward reinforcement of the agent also follows
the same pattern, with a sudden increase in magnitude that
takes place at a reward of 0.8. Furthermore, the density of

that reward surpasses the density obtained by a reward of 1
by a minuscule factor. Notwithstanding, the Dueling DQN
still receives a higher density of greater rewards than the
DQN varying by a density of 3 × 103. Although, having
the agent obtain a large density of rewards allocated at 0.8
proves the existence of a global minima in the positive reward
function that the model needed to surpass in order to obtain
a successful merge, which the negative reward function did
not face. Therefore, the loss and the reward assignment are
used hand in hand to obtain a clearer insight of the model
performance for an optimal model selection, the relatively
lower loss and high successful reward density of the Dueling
DQN model utilising positive reward allocation, showcases the
superiority of the model over the negative reward allocation,
which was adopted for the real world lane merge tests.

B. Automotive and Communication KPIs for real vehicles

The lane merge scenario used for the real tests consists of a
test track using connected and unconnected vehicles. Four ve-
hicles were used, three are connected: merging, following and
preceding vehicle, while the fourth vehicle was unconnected.
This enables the trajectory recommendation to be passed to
the merging vehicle for execution, whilst giving the TO some
control over other connected vehicles in order to suggest a
cooperative lane merging benefiting the entire road.

In order to compare live TO’s predicted trajectories and
human trajectories, a preliminary test was implemented with
no TO’s interaction: several merges were performed on the test
track while the KPI evaluation platform was storing the logs
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of those merges that occurred on the road. These stored logs
are the human merges that are used to compare the predicted
trajectory accuracy and the human likeness of the manoeuvre.

1) Predicted vs Human Collected Trajectory Positioning:
Fig. 5 shows the latitude and longitude of the merging scenario
for human and computed way points. The general shape of
the merge has been detected and successfully predicted by
the TO corresponding to the road architecture, this is a good
indicator that the RL can adapt and generalise to real world
scenarios that it has never encountered before. However, there
is an obvious bias from the predicted way points. Since, the
road information was removed from the training of the model
to ensure a greater generalisation, the neural network’s ability
to exactly follow a trajectory that a human may undertake has
been inhibited. The RL also required perfect synchronisation
of the environment in real-time, therefore, high frequency, low
latency and great precision were required to ensure that the
TO could feed the correct RUD to the RL. As such, the bias
could stem from the minor delays the architecture incurred.
The precision and accuracy of the architecture incorporating
5G was higher than the average [13], this could have not
been obtained by using out-of-the-box implementation of the
5G communication spectrum. Therefore, there is a trade off
between its ability to generalise the problem to the intended
behaviour that is expected to achieve, with respect to the
communication architecture the model is placed in.

2) Inter-Vehicular Distance: The inter-vehicle distances
provide an insight on the merge of the connected vehicles
in between the preceding and following vehicle. This value is
mainly affected by the data fusion of the Image recognition
system and the actual connected vehicles broadcasting posi-
tion. Fig. 6 presents the Empirical Cumulative Distribution
Function (ECDF) of distance values recorded between vehicles
laying on the same lane for the TO and human manoeuvres. On
one hand, the largest frequency of distance values lies between
48 − 60m for Fig. 6a. On the other hand, Fig. 6b shows
that inter-vehicular distance varies greatly when the marge is
undergone by humans spanning from 5 − 70m. This means
that human merges were performed under risky situations in
some cases. In counterpart, the merging car does not hinder the
safety distances between the other vehicles that are presented
on the road, when calculated by the TO. In this sense, the

TO does not bias the merging distance between the preceding
and following car, opting to merge approximately in between
the two vehicles, to maintain the largest inter vehicle distance
between the merging car and the two vehicles on the target
lane. Although this does not reflect human-like driving in most
cases, since the merging car can favour merging towards the
preceding vehicle to allow more room for subsequent actions
such as breaking, this was another design choice, in order
to ensure the adaptability of the model and the approach to
different lane merging scenarios, but also simplify the expected
behaviour of the merging vehicle, to reduce neural network
complexity and resources.

3) Merging Acceleration: Fig.7 presents the ECDF of
acceleration values against the acceleration obtained in the
scenario. The acceleration values given to the merging vehicle
were concentrated on speeding the vehicle up to merge in
between the two vehicles from a slow lane into the target
merging lane. The majority of the acceleration values lied in
the range 0 − 2 m2/s providing non extreme acceleration
values for a merge mimicking a human driver approach to
a lane merge. This means that the TO predicted acceleration
values that provides a smooth trajectory recommendation dur-
ing the merge. From the following vehicle’s point of view, the
recommendations given had the intended purpose of slowing
down the following vehicle to create a larger gap in between
the vehicles on the target lane, for a safer and smoother merge
experience. Consolidating the idea of a coordinated lane merge
approach taken on the road. The values obtained from the
V2X Gateway displayed minor noise which further affected
the speed and acceleration values recommended by the TO.

4) Trajectory delivery time: We define the trajectory de-
livery time as the time it takes to deliver a manoeuvre
recommendation, since the moment a RUD is first sent by the
Image recognition system (or a vehicle). The KPI Evaluation
Platform computes the time of every RUD sent from the
Image recognition system (or the vehicle itself) to the DF
and passed onto the TO to calculate and forward a manoeuvre
recommendation to the V2X Gateway which broadcasts it to
the vehicle. Fig. 8 shows the trajectory delivery time per
vehicle in which 380, 000 measurements were taken during the
merging tests. It is clear that 99.9 percentile of the measure-
ments are under a rate of 288ms (receiving the locality of the
vehicle or sending the trajectory recommendation is roughly
144ms). In terms of processing delays, the TO manoeuvre
computation is negligible in the scenario. In most of the cases,
it was not possible to obtain TO’s computation estimations
due to the logging time granularity. The TO achieved a real-
time environment processing, generating safe and successful
manoeuvres for vehicles in need.

On the other hand, analysis showed that the DF is adding a
larger computational delay due to its default usage of TCP
configurations. The use of Nagle algorithm combined with
delayed acknowledgements by TCP, could result in 200ms
of added latency according to [14], which could be the source
of the slight bottleneck stemming from the DF.
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Fig. 6. ECDF of inter-vehicle distance during merging scenario.
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V. CONCLUSION

In this paper, we presented a lane merge coordination model
based on a centralised system. The Dueling DQN model
has been identified as the best approach compared to the
DQN, obtaining more optimal performance and providing
more human-like trajectories. Predicted trajectories provided
smooth driving experience of acceleration in the range of
0 − 2 m2/s. Future works need to be carried out in order
to improve Data Fusion’s performance, processing time and
transport protocol optimisation are points to be addressed.
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