
A Lane Merge Coordination Model for a V2X Scenario
Luis Sequeira, Adam Szefer, Jamie Slome and Toktam Mahmoodi

Centre for Telecommunications Research, Department of Informatics, King’s College London, London, UK
Email: {luis.sequeira, adam.szefer, jamie.slome, toktam.mahmoodi}@kcl.ac.uk

Abstract—Cooperative driving using connectivity services has been a
promising avenue for autonomous vehicles, with the low latency and
further reliability support provided by 5th Generation Mobile Network
(5G). In this paper, we present an application for lane merge co-
ordination based on a centralised system, for connected cars. This
application delivers trajectory recommendations to the connected vehicles
on the road. The application comprises of a Traffic Orchestrator as the
main component. We apply machine learning and data analysis to predict
whether a connected vehicle can successfully complete the cooperative
manoeuvre of a lane merge. Furthermore, the acceleration and heading
parameters that are necessary for the completion of a safe merge are
elaborated. The results demonstrate the performance of several existing
algorithms and how their main parameters were selected to avoid over-
fitting.

Index Terms—Lane merge, intelligent transport system, V2X commu-
nications, edge cloud, machine learning.

I. INTRODUCTION

Connected vehicles play a crucial role in the Intelligent Trans-
port System (ITS). ITS is a platform capable of generating rich
data relating to vehicles’ functioning and their environment. In
this domain, associations such as the European Telecommunications
Standards Institute (ETSI) and 5G Automotive Association (5GAA)
have promoted the use of cellular Vehicle-to-Everything (V2X) com-
munications. A V2X approach seeks to provide real-time, and highly
reliable information to researchers and stakeholders. This has resulted
in enhancements to road safety, traffic efficiency, environmental issues
and energy costs [1].

Due to the growing scope of V2X, a plethora of use-cases and
applications are under research and development [2]: automated
overtake, co-operative collision avoidance, high density platooning
and lane merging. A vehicle capable of transmitting and receiving
data from a network is likely to increase the awareness of a driving
agent. On-board information can be transmitted across a variety of
channels. This includes vehicle-to-vehicle and vehicle-to-network.
These methods deliver the necessary functions to perform manoeu-
vres in a multitude of traffic situations.

In this paper, we focus on a lane merge scenario. This involves
a vehicle merging onto a carriageway. We present a coordination
model that uses a centralised system. This system delivers trajectory
recommendations to connected vehicles. These recommendations
account for all surrounding vehicles - connected or unconnected.
For the calculations, time-critical variables include location, speed
and acceleration. We evaluate various machine learning algorithms to
predict whether a merging vehicle can execute the manoeuver safely.
The contributions presented in this paper include:

• A Traffic Orchestrator model based on a centralised system, that
delivers trajectory recommendations to connected vehicles.

• A performance evaluation of different machine learning algo-
rithms to appropriately select one for the model.

• A study on the effect of maximum depth and the number of
estimators for each algorithm.

The remainder of this paper is organised in the following way.
Section II provides a state of the art of different approaches for lane

merge algorithms. Section III presents the general system model.
Section IV demonstrates the purpose of the Traffic Orchestrator
model. Furthermore, the estimations of different machine learning
algorithms are presented and analysed in Section V. Finally, a
conclusion and future works are presented in Section VI.

II. STATE OF THE ART

Vehicles have gained more capabilities including cruise control,
lane following and assisted large-lateral control manoeuvres. Nowa-
days, research is progressing towards more relevant topics like
Cooperative Adaptive Cruise Control (CACC), for lane changing and
merging [3]. To perform a safe merge, a safety distance is required.
This distance is between the merging vehicle and other vehicles. If a
merging vehicle struggles to fit into the existing gap between vehicles,
there are two options. The first option is to slow down or halt. By
halting, the vehicle will avoid a collision. Alternatively, vehicles in
the main lane could slow down, speed up or merge onto a third lane.
Therefore, a lane merging algorithm is required. This will perform
actions on a merging vehicle - executing successful and safe lane
merges [4].

In [5], the authors simulated a lane merge scenario and applied
pattern recognition for decision-making. The pattern model consists
of a nine grid cell, in which each cell is marked as blocked or
unblocked according to the information of surrounding vehicles. The
longitudinal and lateral trajectory of the merging vehicle was fitted
with a 5◦ polynomial function. The simulation provides different
trajectory models using active (accelerate/decelerate) and passive
(wait) information.

There are function models to evaluate the decisions in a lane
merging scenario. In [6], a low-complexity lane merging algorithm
is presented. It determines whether a lane manoeuvre is desirable. If
so, a suitable gap is selected and the time to perform the manoeuvre
is given. The mathematical model calculates longitudinal and lateral
control trajectories where several weighting parameters define the
optimal model behaviour. However, the author has highlighted the
need for a dynamic prediction model and the generation of backup
trajectories.

A similar approach was used in [7], where the idea was to reduce
the additional road space before the lane change occurs. With this
view, a two-lane road was divided into cells, that can be empty or
contain a vehicle. Four different actions were proposed to manage
vehicles (i.e, acceleration, slowing down, randomization, and vehicle
motion). Based on this, three types of lane change were investigated:
tail to head, head to tail and random. The tail to head approach
showed better performance compared to a random lane merge. The
algorithm assumes that the time and space for the vehicle to change
lane is sufficient and all vehicles on the road are connected. In a
more realistic scenario, time and distance between adjacent vehicles
are essential in deciding if a lane change is possible.

Other strategies use on-board sensors. A representation of the
road environment, using a Dynamic Probabilistic Drivability Map,

ar
X

iv
:2

01
0.

10
42

6v
1 

 [
cs

.L
G

] 
 2

0 
O

ct
 2

02
0



Fig. 1. Lane merge coordination scenario.

is presented in [8], to provide adjacent lane merging instructions.
The automotive test bed includes cameras, radars and lidar sensors.
This delivers driving assistance based on a cost-sensitive analysis of
the road environment, making use of dynamic programming. The
theoretical formulation of this work was tested using data from 40
real world merges.

Real world information has been used, but some of these works
are at a primal stage. In [9], a work-in-progress for an on-ramp
merge driving policy was presented. The scenario considers an on-
ramp merge involving three vehicles - the merging vehicle and two
vehicles on the main lane. A total of 9 variables are used, where 5
variables describe the merging vehicle’s driving state. These include
speed, position, heading angle, distance to the right lane and distance
to the left lane. For the other two vehicles, the speed and position
are known. The algorithm has not been verified or validated.

In [10], the authors consider a transition stage in the path to fully
autonomous transport, with mixed-autonomy driving. Their approach
is based on a set of selfish factors. In the study, they consider mixed-
autonomy driving as a collaboration, to ensure that the collective
reward for lane merging is optimal. A thought-provoking part of the
project introduces a user study. In this study participants simulated
the role of a driver via a keyboard.

III. ARCHITECTURE AND SYSTEM MODEL

This section provides the architecture and model for a centralised
coordination system. This system plans the trajectories of connected
vehicles on the road to ensure there is sufficient space for a merging
vehicle. The lane merge scenario examined in this work is depicted
in Fig. 1. A connected vehicle will attempt to merge onto a single or
multi-lane carriageway in which connected and unconnected vehicles
are present. Through an edge-cloud approach, tailored trajectory
recommendations are determined and sent by the merge coordination
algorithm to connected vehicles. Four distinct components facilitate
the lane merge coordination: a V2X-Gateway, an Image recognition
system, a Global Dynamic Map (GDM) and a Traffic Orchestrator.

The V2X-Gateway is responsible for forwarding messages to the
appropriate applications and interfaces in the infrastructure. The
V2X-Gateway acts as a communication medium that connects the
interfaces and applications to connected vehicles based on a mes-
sage exchanging approach. This method of communication occurs
across 5G connectivity. To use the message forwarding functionality,
applications must subscribe for access to trajectory and location

information. The 5G connectivity seeks to maintain a set of baseline
requirements. The uplink per vehicle should be, at least, 320kbps.
Furthermore, the downlink per vehicle1 should be, at least, 4.7Mbps.
The end-to-end latency requirement should not exceed 30ms.

An Image recognition system [11] collects information about all
the vehicles on the single or multi-lane carriageway. This information
includes the localisation and trajectory-based parameters attributed
to a specific road user (named, Road User Description (RUD)).
Regardless of whether a road user is connected or unconnected,
information about that vehicle will be collected and processed. With
trajectory-based information about all visible vehicles, the Image
recognition system communicates with a V2X-Gateway. This will
forward every message to the GDM.

The GDM stores environmental information about connected and
unconnected vehicles in a database. It interprets messages containing
vehicle information (RUD). This information is delivered by the
Image recognition system and connected vehicles. The GDM ensures
that stored RUDs are updated. It also provides a synchronisation
mechanism for descriptions originating from different sources (e.g.,
two RUDs from the Image recognition system and a connected
vehicle in a closely localised time frame, respectively). To access
information stored in the GDM, applications must subscribe to a
specific location boundary.

The Traffic Orchestrator will process environmental data about
connected and unconnected vehicles to generate trajectories for
connected vehicles. The Traffic Orchestrator needs to consider time-
critical variables such as the timestamp of the vehicle location,
the speed of the vehicle and the vehicle-specific dimensions. Once
the Traffic Orchestrator provides a trajectory recommendation for
a single or set of road users, these trajectories will be sent to the
V2X-Gateway. The V2X-Gateway will feed these recommendations
to the connected vehicles. The connected vehicles have the choice
to either accept, reject or abort the recommendation. This feedback
information is supplied by the connected vehicles to the Traffic
Orchestrator. Then, the feedback can be used to recalculate trajectory
recommendations. The Traffic Orchestrator will use data supplied to
the GDM to accommodate a merge for an “approaching vehicle”.
This results in a vehicle moving onto the carriage-way lane from an
“on-ramp” lane. In this paper, we will focus on the design of the
Traffic Orchestrator.

1https://5gcar.eu/

https://5gcar.eu/


Traffic Orchestator

Knowledge 
Base

Detec�on 
Interface

Network 
Interface

Exchange Interface

Predic�ve Algorithms

Al
go

rit
hm

 1

Al
go

rit
hm

 2

Al
go

rit
hm

 3

Al
go

rit
hm

 n

Fig. 2. Proposed Traffic Orchestrator architecture.

IV. TRAFFIC ORCHESTRATOR

A. Traffic Orchestrator Model

The proposed architecture for the Traffic Orchestrator system is
presented in Fig. 2. The main purpose of the Detection Interface is
to listen to, wait for and receive any data being sent, over a Transmis-
sion Control Protocol (TCP) connection, by the V2X-Gateway. The
Detection Interface also acts as an intermediate filter that will read
JavaScript Object Notation (JSON) strings and commence the process
of converting the JSON readable messages into more compact and
computer efficient entities. Once a message has been successfully
parsed by the Detection Interface, it can begin assigning the values
found within the string to structured types. These structured types are
then taken through further processing and data handling. Similarly,
the Network Interface will act as an intermediate filter that will
convert and translate information within the Traffic Orchestrator, to
information that is readable and accepted by the V2X-Gateway.

A Knowledge Base has been designed to store the information
sent to the Traffic Orchestrator. A knowledge base, of up-to-date
RUDs, is maintained to guarantee that a manoeuvre recommendation
is calculated based on all current road-environment knowledge. The
Knowledge Base will contain only the RUDs that the GDM has most
recently transmitted. This will prevent maintaining information within
the Traffic Orchestrator that is out-of-date or no longer relevant.
The Knowledge Base, although simpler than a database, will have
to mimic the access and modification functions of a typical database.

The Exchange Interface has been designed to have two responsi-
bilities: execute the Traffic Orchestrator application and mediate the
flow of information across all interfaces in the Traffic Orchestrator.
The Exchange Interface takes structured data from the Detection
Interface and appropriately forms the data into entities. These entities
can then be reused throughout the rest of the system in a consistent
manner. This component directly interfaces with the Knowledge Base
and will collect structured RUDs. Then, it will represent this data
as a Traffic Orchestrator entity. This entity will then be inserted
into the Knowledge Base. Another functionality of the Exchange

Interface is to provide access for consistent methods to a set of Traffic
Orchestrator functionalities, allowing different algorithms to run on
top of it.

B. Design premises for lane merge coordination

1) Dataset: Two distinct datasets collected by Federal Highway
Administration Research and Technology2 are adopted in this work.
The datasets represent the data collected from two American motor-
ways: I − 80 and US − 101. In this paper, a scenario with 3 cars is
considered. For each lane change scenario, there is 1 lane changing
vehicle (denoted M) and 2 cars on an existing lane (denoted preceding
- P and following - F).

2) Detecting lane change: Vehicle’s measurements are sorted in
ascending order by a timestamp. To detect a lane change, we need
to compare two consecutive measurements. If the Identification (ID)
value for a lane, associated with a vehicle, has changed, then a lane
change has occurred. However, it is unknown whether the lane change
is successful. To acquire a vast amount of data about a potential
lane change, data from 4 seconds before and 3 seconds after the
lane change is detected and subsequently stored (70 values per lane
change). This provides information about locations on the road that
should be deemed safe, or otherwise unsafe, for a lane change.

3) Labelling the extracted data: If a lane change is possible, the
recommendation outputs true (Fig. 3a), otherwise false (Fig. 3b). This
identifies which lane change situations are recommended and which
are not. A lane merge is not relevant if the merging vehicle (M) is
behind the following car (F) on the new lane. For this reason, all such
cases are labeled with a recommendation equal to false (Fig. 3c). To
change lane safely, a safe distance between the front of the merging
vehicle and the back of the preceding vehicle (P) must be maintained
between the vehicles. Furthermore, a safe distance between the back
of the merging vehicle and the front of the following vehicle must
be maintained between the vehicles. For both cases, a safe distance
is considered to be 0.1 times the speed of the merging vehicle.

4) Desired position: The most desirable position for the merging
car is the location that fits the safety requirements for the merge. The
preceding and following vehicles will determine the most suitable
position on the merging lane.

5) Recommended heading: The heading for true recommendations
should “lead” the vehicle to the position at which the car is most
desired. For false recommendations, the vehicle should be “led” to the
first location at which recommendations becomes true (if possible).

6) Recommended acceleration: The recommended acceleration
is calculated with three rules in mind. Firstly, false lane change
recommendations use the average speed to the first point at which
a recommendation is true. Secondly, any position before the most
desired position uses an average of the accelerations from the consid-
ered position, to the “most desired position”. Thirdly, for any position
after the most desired location, an average of the accelerations from
the “most desired position” to the considered location, is calculated.

C. Lane merge detection

To detect a lane change, a script utilises previously prepared files
with JSON objects - these objects contain a list of measurements for
a specific car. The program stores the information about the initial
lane number and compares that value with the current lane ID.

A recommendation checker was implemented to ensure that rec-
ommendations are accurate. For the checker to determine whether a
recommendation could be true, it checks if the gap is wide enough to

2https://www.fhwa.dot.gov

https://www.fhwa.dot.gov


(a) true recommendation. (b) false recommendation. (c) Merging car is “behind” following car.

Fig. 3. Design premises for different road situations.

0 5 10 15 20 25 30
max depth (number of nodes)

0

2

4

6

8

10

12

14

16

18

20

e
rr

o
r 

(%
)

training
validation

(a) Random Forest.

0 10 20 30 40 50
max depth (number of nodes)

0

2

4

6

8

10

12

14

16

18

20

e
rr

o
r 

(%
)

training
validation

(b) K-Nearest Neighbours.

0 5 10 15 20 25 30
max depth (number of nodes)

0

2

4

6

8

10

12

14

16

18

20

e
rr

o
r 

(%
)

training
validation

(c) Decision Tree.

Fig. 4. Accuracies on the training and the validation set for different max depth values when predicting lane merges.

accommodate a merging car. The minimal recommended gap value
is dependable on the speed of the vehicle.

The safety conditions of a lane merge are based on the intersection
of two pairs of cycles. Firstly, one cycle has the central x and y
coordinates of the merging vehicle and the radius of 10% of its
speed in km

h
. This is compared with a second cycle which has the

central x and y coordinates of the preceding vehicle and the radius
of its length. If the cycles share common coordinates, or a cycle
intersects the other, the recommendation is set to false, resulting
in a final recommendation for that case. Furthermore, the central
x and y coordinates of the merging vehicle will be compared to a
cycle with the central x and y coordinates of the following vehicle,
with its radius equal to the length of the vehicle. Similarly, the same
conditions are checked.

If the merging vehicle cycle does not intersect the cycles repre-
sented by the preceding or following vehicle, the recommendation is
then set to true, otherwise, it is set to false.

D. Acceleration and heading calculation

The calculation for acceleration was divided into two segments
- before arriving at the “most desired position” (MSP) and after.
Points before the MSP are calculated in reverse order (from the MSP
to the first sample in the considered group). The accelerations for
this measurement were calculated as a sum of the accelerations from
the considered point to the MSP, divided by the number of samples
between these two (constant time for each sample, if prefix sums were
used). For the points after the MSP, the acceleration was calculated
by dividing the prefix sum from the MSP to the considered point,
divided by the number of samples between these two.

Information about the MSP is used to calculate heading, but for
the samples with false recommendations, the MSP for the heading is
changed to the first position at which the general recommendation is
true.

V. RESULTS

In this section, true and false recommendations for lane merges are
analysed. The classifiers used for the predictions are selected from

the most common machine learning algorithms. The learning phase
helped us select a smaller number of algorithms that behaved the
best out of the initial selection. This also allowed us to consider a
smaller set of classifiers with greater granularity. For each of the
classifiers, different parameters were considered. In order to select
the most suitable algorithm for predicting lane merges, 9 different
algorithms were trained and validated. Whether a merge is predicted
as true or false, a prediction for acceleration and heading is also
provided. Predicting acceleration and heading involves a higher level
of complexity. A few recommendations for acceleration and heading
might be correct at the same time. For this reason, 3 algorithms are
presented in each case as they provide the best-obtained results.

A. Predicting lane merges

To avoid over-fitting with default attributes, the parameters for
maximum depth and number of estimators were assigned, since they
specify the depth of the tree and the number of trees in the forest.
These were selected by picking the values which were not over-fitting
the model. We have selected the three highest scored algorithms to
demonstrate how maximum depth was selected. Fig. 4 shows the
accuracy for Random Forest, K-Nearest Neighbours and Decision
Tree; which have the highest scores. To select the maximum depth of
the tree, 30 consecutive depths were considered for Random Forest
and Decision Tree, and 50 for K-Nearest Neighbours. The values
considered for the number of estimators were: 1, 2, 5, 10, 20, 35,
50, 75 and 100. The best value for the number of estimators is 100;
it is used for the three algorithms.

To select a proper maximum depth for the Random Forest, we
estimated the error on the validation and training sets (Fig. 4a) for
different values of maximum depth. The value of maximum depth
was chosen by comparing the results obtained on the validation set
with the specified number for depth. The value of 16 was the last for
which the accuracy of the validation set was not worse than 1.5%
than the accuracy on the training set. The accuracy on the test set was
the same as the accuracy on the validation set. The same technique
was used to train the no over-fitting Decision Tree (Fig. 4c). The



TABLE I
SCORES OF DIFFERENT MACHINE LEARNING ALGORITHMS WHEN

PREDICTING LANE MERGES, ACCELERATION AND HEADING.

Model Merge Acceleration Heading

Random Forest 90.87 75.74 61.20
K-Nearest Neighbours 87.05 − −
Decision Tree 86.84 − −
Gradient Boosting Classifier 84.22 − −
Stochastic Gradient Decent 80.54 − −
Logistic Regression 80.41 − −
Linear SVC 80.41 − −
Naive Bayes 72.00 − −
Perceptron 19.59 − −
Gradient Boosting − 76.55 62.85
Linear Regression − 15.47 41.71

best value for which the model was not over-fitting was equal to 11
and showed less than 1% of difference with the validation set. The
over-fitting of K-Nearest Neighbours has a different property (Fig.
4b). The lower the number of K, the higher the probability of over-
fitting. To minimize the chance of over-fitting, K was set to 50. Table
I shows a summary of the obtained scores for predicting lane merges.

The scores were calculated using two functions. The function
names are accuracy score and score. The accuracy score function
(sklearn.metrics) uses multi-label classification. This method calcu-
lates subset accuracy such that the predicted labels for a sample
specifically equal a set of labels; the expected and correct labels.
Crucially, this function was used to calculate the scores on the
validation data set. The score function returns the mean accuracy
on the given test data and labels. In a multi-label classification
environment, this is the subset accuracy that enforces a harsh metric.
For each sample, it is required that every label set is correctly
predicted. Crucially, this function was used to calculate scores on
the training data set.

Additionally, for the Random Forest Classifier and Ran-
dom Forest Regressor, we used the cross val score function
(sklearn.model selection). This function evaluates a score using
cross-validation techniques. The parameter, cv, was assigned a value
of 10, which specifies the number of folds in a StratifiedKFold.
Finally, results for both data sets were rounded to two decimal places.

B. Predicting acceleration

By using the same data for the lane merge recommendations as
the predictions of heading and acceleration, the results gave very low
accuracy. For this reason, two simplifications on the dataset were
made. Firstly, for each feature individually, a rounding of values
was applied (e.g., lengths of the vehicles were rounded to 1 decimal
place). Secondly, the recommended acceleration was rounded to the
closest integer. Furthermore, a function labeling predictions to be true
or false by assumption that the result is only 1 m

s2
away from the

correct value is correct, was implemented and used.
As previously mentioned, to avoid over-fitting, several tests were

deployed with different values for the number of estimators and
maximum depth. Again, the best output was when the number of
estimators was set to 100. We have selected the two highest scored
algorithms to demonstrate how maximum depth was selected (Fig.
5). The considered values for maximum depth were in a range from
1 to 13 inclusively for Gradient Boosting (Fig. 5a). The model with a
maximum depth bigger than 11 had much more accurate predictions
for the training set than for the validation set, which suggested over-
fitting. For this reason, a value of 11 was selected for maximum depth.

0 5 10 15 20
max depth (number of nodes)

0

10

20

30

40

50

60

70

80

90

100

e
rr

o
r 

(%
)

training
validation

(a) Gradient Boosting.

0 5 10 15 20
max depth (number of nodes)

10

20

30

40

50

60

70

80

90

100

e
rr

o
r 

(%
)

training
validation

(b) Random Forest.

Fig. 5. Accuracies on the training and the validation set for different max
depth values when predicting acceleration.

For Random Forest, a range between 1 and 22 was considered for
maximum depth; the results are shown in Fig. 5b. The plot suggests
that the values of maximum depth that are bigger than 18 are getting
over-fitted. Table I shows a summary of the obtained scores for
predicting acceleration.

C. Predicting heading

Predicting heading is similar to predicting acceleration, where at
the same time a few predictions might be true. However, a new
consideration needs to be taken into account: two different values can
lead to the same point, for instance, 10◦ and −350◦. We applied a
few simplifications as we did for acceleration: a) rounding the number
to at most 1 decimal place for non-location variables and b) rounding
to 2 decimal places for positioning information. Additionally, an
evaluation function for heading was implemented, which returns
values in a range between 0◦ and 360◦. It also calculates maximum
error by comparing predicted and labelled values and calculating their
difference.

Following the same procedure as for acceleration, the best results
were obtained when the number of estimators was set to 100. We



0 2 4 6 8 10 12 14
max depth (number of nodes)

0

10

20

30

40

50

60
e
rr

o
r 

(%
)

training
validation

(a) Gradient Boosting.

0 2 4 6 8 10 12 14
max depth (number of nodes)

30

35

40

45

50

55

60

e
rr

o
r 

(%
)

training
validation

(b) Random Forest.

Fig. 6. Accuracies on the training and the validation set for the different max
depth values when predicting heading.

have selected the two highest scored algorithms for showing how
maximum depth was selected (Fig. 6). To select maximum depth,
tests were repeated from 1 to 17 for Gradient Boosting (see Fig. 6a)
and from 1 to 17 for Random Forest (see Fig. 6b). The value of the
maximum depth for the Gradient Boosting was assigned to 6 because,
as for the previous cases, it is the last value for which the score of
the validation set is not much worse than the score for the training
set. The maximum depth for the Random Forest was set to 11. The
score of the algorithms for predicting heading is not very high (Table
I), but even after ignoring over-fitting, the model had a problem to
learn anything efficiently. The score of the Random Forest is only
2% worse on the validation set than the Gradient Boosting.

VI. CONCLUSION

In this paper, we present a lane merge coordination model based on
a centralised system. The system delivers trajectory recommendations
to connected vehicles on the road. Real data from two highways
has been used to train and validate a multitude of machine learning
algorithms. Several tests were performed to properly select the

maximum depth and the number of estimators for each algorithm.
The Random Forest approach has been identified, among 9 different
algorithms, as the main candidate to predict true/false lane merges.
Predicting acceleration and heading involves a higher level of error
and complexity. This is due to a scarcity of predicted values that fit
the problem domain at the time of analysis.

When predicting lane merges, the proposed coordination model
presents meaningful results. On the other hand, predictions for
acceleration and heading showed less accurate results. The error rate
can have serious negative ramifications if handled inappropriately. A
way to decrease the number of potential accidents caused by incor-
rectly labelled outputs is to run the predictive model, for each lane
change, multiple times during the lane changing process. For this, a
performance analysis of the model that is relying on communication
standards is recommended as a future work. Therefore, an analysis of
the network reliability, end-to-end latency measurements, combined
with the computational analysis of the suggested algorithms and
environment-based validation checks, will help this model gain more
traction in a real-world scenario.

ACKNOWLEDGEMENT

This work has been performed in the framework of the H2020
project 5GCAR co-funded by the EU. The views expressed are those
of the authors and do not necessarily represent the project. The
consortium is not liable for any use that may be made of any of the
information contained therein. This work is also partially funded by
the EPSRC INITIATE and The UK Programmable Fixed and Mobile
Internet Infrastructure.

REFERENCES

[1] 5GAA, “The case for cellular v2x for safety and cooperative driving,”
November 2016.

[2] 5GPPP, “5g automotive vision,” October 2015.
[3] D. Bevly, X. Cao, M. Gordon, G. Ozbilgin, D. Kari, B. Nelson,

J. Woodruff, M. Barth, C. Murray, A. Kurt et al., “Lane change and
merge maneuvers for connected and automated vehicles: A survey,”
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 105–120,
March 2016.

[4] H. C. Hsu and A. Liu, “Kinematic design for platoon-lane-change
maneuvers,” IEEE Transactions on Intelligent Transportation Systems,
vol. 9, no. 1, pp. 185–190, January 2008.

[5] Q. H. Do, H. Tehrani, S. Mita, M. Egawa, K. Muto, and K. Yoneda,
“Human drivers based active-passive model for automated lane change,”
IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 1, pp.
42–56, January 2017.

[6] J. Nilsson, J. Silvlin, M. Brannstrom, E. Coelingh, and J. Fredriksson,
“If, when, and how to perform lane change maneuvers on highways,”
IEEE Intelligent Transportation Systems Magazine, vol. 8, no. 4, pp.
68–78, October 2016.

[7] M. Zhu, J. Hu, L. Kong, R. Shen, W. Shu, and M. Wu, “An algorithm
of lane change using two-lane nasch model in traffic networks,” in 2013
International Conference on Connected Vehicles and Expo (ICCVE),
December 2013, pp. 241–246.

[8] S. Sivaraman, M. M. Trivedi, M. Tippelhofer, and T. Shannon, “Merge
recommendations for driver assistance: A cross-modal, cost-sensitive
approach,” in IEEE Intelligent Vehicles Symposium, June 2013.

[9] P. Wang and C. Chan, “Formulation of deep reinforcement learning
architecture toward autonomous driving for on-ramp merge,” in 2017
IEEE 20th International Conference on Intelligent Transportation Sys-
tems (ITSC), October 2017, pp. 1–6.

[10] S. Bansal, A. Cosgun, A. Nakhaei, and K. Fujimura, “Collaborative
planning for mixed-autonomy lane merging,” in 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Oct 2018,
pp. 4449–4455.

[11] K. Cordes and H. Broszio, “Constrained multi camera calibration for
lane merge observation,” in 14th International Conference on Computer
Vision Theory and Applications (VISAPP), February 2019.


	I Introduction
	II State of the art
	III Architecture and System Model
	IV Traffic Orchestrator
	IV-A Traffic Orchestrator Model
	IV-B Design premises for lane merge coordination
	IV-B1 Dataset
	IV-B2 Detecting lane change
	IV-B3 Labelling the extracted data
	IV-B4 Desired position
	IV-B5 Recommended heading
	IV-B6 Recommended acceleration

	IV-C Lane merge detection
	IV-D Acceleration and heading calculation

	V Results
	V-A Predicting lane merges
	V-B Predicting acceleration
	V-C Predicting heading

	VI Conclusion
	References

