
Traffic Optimization for TCP-based Massive
Multiplayer Online Games

Jose Saldana, Luis Sequeira, Julián Fernández-Navajas, José Ruiz-Mas
Communication Technologies Group (GTC) – Aragon Inst. of Engineering Research (I3A)

Dpt. IEC. Ada Byron Building. CPS Univ. Zaragoza
50018 Zaragoza, Spain

{jsaldana, lsequeirav, navajas, jruiz}@unizar.es

Abstract— This paper studies the use of a traffic optimization
technique named TCM (Tunneling, Compressing and
Multiplexing) to reduce the bandwidth of MMORPGs
(Massively Multiplayer Online Role-Playing Games), which
employ TCP to provide a soft real-time service. In order to
optimize the traffic and to improve bandwidth efficiency, TCM
can be applied when the packets of a number of players share
the same link, which occurs in some scenarios, as e.g. the traffic
between proxies and servers of game-supporting
infrastructures. First, TCP/IP headers are compressed using
standard algorithms that avoid sending repeated fields; next, a
number of packets are blended into a bigger one and finally,
they are sent using a tunnel. The expected compressed header
size has been obtained using traffic traces of a real game. Next,
simulations using a traffic model of a popular MMORPG have
been performed in order to estimate the expected bandwidth
savings and the reduction in packets per second. The obtained
bandwidth saving is about 60 percent. Packets per second are
also significantly reduced. In addition, the added delays are
shown to be small enough so as not to impair players’
experienced quality.

Keywords- MMORPG, online gaming, TCM, header
compression, real-time

I. INTRODUCTION
Massively Multiplayer Online Role-Playing Games

(usually known as MMORPGs) are becoming very popular
in the last years. They create a virtual world which is
simultaneously shared by thousands of players, each of them
controlling an avatar. The players have to accomplish some
missions, for which they need to collect different objects.
Initially, they have some powers and weapons, which can be
improved as they reach higher levels.

These games are acquiring more and more popularity,
and the most well-known of them (World of Warcraft,
developed by Blizzard Ent.) claims to have more than 10
million users worldwide [1]. It reached a maximum number
of 12 million users, although the raising of other titles which
are free to play is reducing its share. Nevertheless, it can still
be considered the MMORPG par excellence.

Taking into account the high number of users, the
problem of supporting the service after the release of a title is
not trivial. The success of a game is not totally predictable
and, in fact, some games, as Diablo II, had serious supporting

problems in the first months after their release [2]. The
problem becomes worse since game players have been
reported to be very difficult to satisfy, i.e., if a server does
not match their requirements, they would leave and never
return [3].

As a result, game providers have to design and deploy
suitable supporting infrastructures, with enough processing
capacity and bandwidth. A hierarchical structure of game
servers, some of them acting as proxies, has been proposed in
the literature [4]. The gamers follow certain connection
patterns during the day, and this means that there are some
critical moments when the number of simultaneous players
becomes very high [1]. Some studies have shown that game
servers cannot easily share their capacity with other services
(e.g. web) [3], as they present similar daily periodic workload
peaks. Consequently, techniques providing bandwidth and
workload savings are interesting so as to avoid the need of
over provisioning the resources. In the same study, the
existence of a limit in the packets per second (pps) that a
router can manage was highlighted, and it was recommended
to consider this pps limit it in addition to bandwidth limit.

Although MMORPGs are between the most popular
online games, there are other genres that are also played by
millions of users. As an example, First Person Shooters
(FPSs) are also a consolidated group of games with some
characteristics in common: the virtual scenario is shared by a
few tens of players, who use fire weapons to kill the enemies
or accomplish a mission. The weapon can be improved as the
player earns money, depending on their fighting skills.

The main differences between these two genres can be
summarized [5], [6], [7] as follows:

 Session duration in MMORPGs is longer than in FPSs.
Nevertheless, FPS gamers usually play a number of
rounds during the same session.

 The number of players sharing a virtual scenario in an
FPS is of a few tens, whereas thousands of players can
simultaneously share the virtual world of an MMORPG.
The real-time and interactivity requirements of FPSs are
higher, and the good aim of the player is of primary
importance. In contrast, MMORPGs are not based on the
good aim, since the players first use the mouse to select
the objective, and then they choose the weapon or the
curse to use against the enemy.

 FPSs use UDP protocol, while most MMORPGs use
TCP.

This work has been partially financed by CPUFLIPI Project (MICINN
TIN2010-17298), MBACToIP Project, of Aragon I+D Agency and Ibercaja
Obra Social, and NDCIPI-QQoE Project of Catedra Telefonica, Univ. of
Zaragoza.

The last difference is the most important for the current
study: the use of UDP in FPSs means that there is no
retransmission when a packet is lost. This fact has some
implications: e.g. a shot can be lost, so players usually use
machine-gun bursts so as to kill the enemies. Some games
implement packet loss concealment algorithms in order to
hide network impairments to the players [8]. The latency is
of primary importance in these games, as remarked in [9]. In
fact, network latency can make a player miss a hit which was
initially good1.

 On the other hand, MMORPGs normally use TCP,
which is reliable and avoids the loss of any information
related to players’ actions. When a packet is lost, the protocol
asks for a retransmission. But the actions, and especially the
fights, do have some interactivity: the player can select
different weapons and curses while the fight is on, and their
ability to do this quickly has a significant impact on the final
result. So we can conclude, as reported in [5], that these
games can be considered as a new class of service: (soft)
real-time and interactive using TCP.

In order to avoid additional delays, MMORPGs usually
set to 1 the “push” flag of TCP header [5], thus forcing the
packet to be sent as soon as possible. As a result, they tend to
generate small TCP packets. This is a very interesting
scenario where header compression can be applied: we have
long-term flows, with many header fields that are the same
for every packet.

This paper presents the use of a Tunneling, header
Compression and Multiplexing technique (TCM), in the
context of MMORPG traffic. These techniques were first
developed for RTP flows [10], where significant savings can
be achieved [11]. In [12] the technique was adapted to UDP
flows of FPS games, and significant savings were also
obtained. The reduction in terms of packets per second was
also high. In the current study we try to find whether the
technique is also suitable to compress TCP flows of
MMORPGs, taking into account the special issues that
appear when multiplexing is applied to a reliable protocol.

Regarding the scenarios of application, the technique can
be first used between the servers that support the game (Fig.
1 a): a proxy may receive the traffic of all the users of a zone
(e.g. a town or a district), and forward it to the central server,
so the aggregated traffic between the proxy and the server
can be compressed and multiplexed, while adding small
delays. This may provide some flexibility to the supporting
infrastructure: when bandwidth gets scarce, traffic is
multiplexed; and when the number of users diminishes, the
traffic is sent in its native form, thus avoiding additional
delays.

Other scenarios, as an Internet Café (Fig. 1b), where a
number of users simultaneously play the same game, can also
be suitable for this technique. However, in this case the
number of users may be significantly smaller than the one for
the server-to-server scenario. In the tests we will have to
determine the number of players for which the use of the
technique is interesting, taking into account that subjective
quality must not be harmed.

1 Some expert players compensate the effect of network latency aiming
the weapon some meters ahead their enemy, when he is moving,
performing a sort of “correction of the point of aim”.

Central
Game
Server

Players

Proxy

Proxy

Proxy

Players

TCM

TCM

TCM

(a)

.

.

.
Game Server

Players

Access
routerMultiplexer

TCM

(b)

Figure 1. Scenarios where TCM can be applied: a) traffic between servers;
b) Internet café.

The structure of the paper is as follows: related works are
discussed in section II. Next, the use of the compressing and
multiplexing technique for MMORPG traffic is studied.
Section IV presents the test methodology and the final
results. The paper ends with the Conclusions.

II. RELATED WORKS
Many topics have to be considered in this section. First,

the use of proxies for game-supporting infrastructures was
proposed in [2] and [13], taking into account the stringent
requirements of this concrete service. In [14] the feasibility
of a peer-to-peer support for MMORPGs was studied, and
one of the conclusions was that message aggregation can
reduce network latency.

Regarding header compression methods, a number of
them have been defined and standardized. They mainly avoid
the sending of the header fields that are the same for every
packet of a flow, and they also use delta compression for
reducing the number of bits of changing fields. This requires
the use of a context, which stores the value of non-changing
header fields, e.g. IP addresses and ports. Logically, context
synchronization between the origin and the destination is of
primary importance.

The first method for compressing TCP/IP headers was
proposed by Van Jacobson [15]. Later, IPHC [16] also
included the possibility of compressing IPv6 and UDP
headers. At the same time, cRTP was defined [17], being also
capable of compressing IP/UDP/RTP headers. Some years

later, ECRTP [18] presented some improvements with
respect to cRTP in links with high delay, packet loss and
packet reordering. The last compressing algorithm presented
was ROHC [19], which prevents the desynchcronization of
the context, especially in wireless scenarios.

Multiplexing methods were first designed for RTP flows,
due to the existence of scenarios where a number of real-time
flows may share the same path. The IETF defined TCRTP as
RFC 4170 [10], in order to compress headers, also using
PPPMux so as to include a number of native packets into a
multiplexed one. Finally, an L2TPv3 tunnel was included in
order to permit the end-to-end sending of packets. This
method was adapted for its use when the traffic is not
RTP/UDP but only UDP [12], showing its ability to obtain
significant bandwidth savings, which could be above 30% for
IPv4, and 50% when IPv6 was considered. In the current
article, we study the feasibility of this method when applied
to (soft) real-time TCP flows.

A number of traffic models have been developed for FPS
games [20]. The traffic of MMORPGs has also been
analyzed in [5], [7]. These studies, based on traffic traces of a
game, deploy a mathematical model, which is compared to
the original one by means of suitable analytical tools, as Q-Q
plot. The developed models allow the generation of synthetic
traffic, which can be useful for further research, thus
avoiding the need of playing the game while performing
network measurements.

Finally, it must be said that subjective quality models
have also been developed for online games. They were first
developed for VoIP [21], but they have also been adapted for
different games. The final result of the model is a MOS
(Mean Opinion Score) value, which ranges from 1 (bad) to 5
(excellent). The threshold value of acceptable quality is
usually considered to be about 3.5. The problem is that each
game presents a different behavior with respect to each
concrete network parameter, since different techniques are
used by developers for the concealment of network
impairments [6]: for example, in [8] it was reported that,
while the players of Quake IV are surprisingly not aware of
packet loss up to 35 %, Microsoft’s Halo stops working
when packet loss is 4%. As a consequence, each game has to
be particularly studied by means of subjective surveys. In
[22] a subjective quality model for World of Warcraft was
presented, based on delay and jitter.

III. ANALYSIS OF TCM FOR MMORPG TRAFFIC
In this section, the behavior of TCM is firstly explained.

Next, the header compression protocol is more deeply
studied. The formula of the expected bandwidth saving when
using TCM for this traffic is presented in the last subsection.

A. Summary of TCM and TCP-related issues
Traffic compressing and multiplexing can be applied to

TCP/IP flows, as shown in Fig. 2. It consists of three steps:
first, a header compression algorithm is applied to the
headers of the packets. Next, compressed packets are
multiplexed using PPPMux; and finally, the bundle is sent to
the destination using PPP and L2TPv3 tunneling, which
allows end-to-end delivery.

PPP

PPP Mux

Reduced Header

Payload

IP

TCP...
Reduced Header

Payload

L2TP

IP

Figure 2. TCM protocol stack, for TCP/IP header compressing.

MUX DEMUX

Tprocess Tqueue Tnetwork Tprocess

Tretention

.

.

.

 IP TCM IP

Game Server

Players

IP network

Figure 3. Scheme of the elements of the system and their associated
delays.

The technique becomes interesting when a number of
flows share the same path. This permits the sharing of the
common header between all the packets, taking into account
that the header size will be slightly increased due to the use
of the tunnel. As shown in Fig. 3, the tunnel is only
established from the multiplexer to the demultiplexer, where
the packets are rebuilt exactly as they were generated by the
application. This means that multiplexing is transparent to
the game and to the server, so it can be independently applied
for client-to-server and/or server-to-client traffic.

Different policies, which were compared in [23], can be
used so as to select the packets to multiplex in each bundle.
In the present study, we have used a policy that defines a
period, and blends all the packets arrived to the multiplexer,
sending them at the end of the interval (Fig. 4), thus
establishing an upper bound for the added delay. As a result,
packets from different flows share the same multiplexed
bundle. In order to avoid packets bigger than MTU
(Maximum Transmission Unit), a size threshold is also
defined, and a multiplexed packet is sent whenever that
threshold is reached, even if the period has not finished.

Finally, we will do some considerations about the specific
problems that appear when using this scheme with TCP
flows, taking into account that the multiplexing scheme was
developed for real-time flows using UDP packets. If we look
at Fig. 2, we can see that the multiplexed bundle is not
carried over TCP, so TCP payloads are being transmitted
over an unreliable protocol. If a packet loss occurs, then all
the multiplexed packets will be lost. As a result, the
retransmission mechanisms of TCP will act for each of the
flows. Therefore, multiplexing is transparent for the
communication ends, and it can be seen as an additional
delay.

Regarding packet loss probability, the number of packets
sent is reduced by a factor of E[k], i.e. the average number of
multiplexed packets. However, the loss of a multiplexed

PE

. . .

. . .

. . .

. . .

Native
traffic

Multiplexed
traffic

PE PE T<PE PE

Figure 4. Multiplexing policy using a period PE

packet is equivalent to the loss of E[k] native ones. As a
result, the packet loss probability will remain the same.

This can make us question if it could be more adequate to
add a new TCP layer between the IP and L2TP layers of the
tunnel. This second TCP layer would retransmit multiplexed
lost packets. But we have decided not to use this option on
behalf of simplicity: while a multiplexed bundle is being
retransmitted, the retransmission mechanisms of some of the
native TCP flows may also act, asking for new packets which
would be subsequently multiplexed.

B. Header Compression Algorithm
Different header compression protocols can be used in

TCM. We need a protocol capable of compressing TCP/IP
headers, so we may select IPHC or ROHC. Although they
use similar compression methods, the latter has been
designed to perform well even in links with high RTT and
packet loss, as it happens in wireless environments. It
sacrifices some amount of compression so as to improve
context synchronization guarantees [24]. As the scenarios
considered in the present work are wired networks with a
very low packet loss rate, IPHC is considered more adequate
for our proposal.

In order to obtain the expected size of the header, we will
briefly summarize the IPHC algorithm, which was adapted
from [15], and jointly compresses TCP and IP headers.

The protocol sends two different header types:

 FULL_HEADER: it establishes or refreshes the context
of a packet stream, represented by a context identifier
(CID). It presents the same size of the original, but it
includes the CID value in the second byte of the total
length field of the IP header. The length of the packet is
inferred from lower layer protocols.

 COMPRESSED_TCP: in the rest of the cases, a
compressed packet is sent. Its scheme can be seen in Fig.
5. The first byte includes the identifier of the context
(CID), and the second one is a mask that indicates which
fields are present in the header, e.g. if the bit S is set to 1,
this means that the field Δsequence (S) is present. There is
an exception: the bit P is a copy of the one of the original
header. This is the push bit, and it indicates that this
packet has to be sent immediately.

The fields that are the same for every packet of the flow
are denoted as DEF fields, and they are only included in full
headers. Random fields are the ones for which delta
compression is not suitable, since they change randomly.
They have to be sent in each packet, and they are included
after TCP checksum, in the same order as they appear in the
original header.

Ref. [15] defined a mechanism for including full fields
instead of delta ones when necessary: if 8 bits are not enough
to express the change in the field (i.e. a change bigger than
256), then an extra byte of zeros is included, and next, the
full field. So a decision has to be made, depending on the
behavior of a field: if the number of times it significantly
changes is big, then it will be better to include it as a random
field, thus avoiding the additional byte of zeros. The
probabilities of having each header size have to be computed
in order to obtain the expected value of the compressed
TCP/IP header for each concrete application.

C. Expected Savings
In order to obtain a formula for the expected bandwidth

savings, we can calculate the expected size of the packets
arrived in a period, and also the expected size of the
compressed packet. For simplicity, we will not consider the
effect of the MTU limit. Thus, we will use the next variables:

 NH: The native header size: 40 bytes for TCP/IPv4.

 CH: The size of the common header, which will be
25 bytes if IPv4 is used: 20 for IP header, 4 for L2TP
and 1 for PPP.

 MH: PPPMux header (2 bytes).

CID

urgent pointer (U)

R O I P S A W U

Δ window (W)

Δ ack (A)

Δ sequence (S)

Δ IP ID (I)

Byte 0

1

2

3

4

.

.

.

Random fields, if any

R-octet

Options

if R=1

if U=1

if W=1

if A=1

if S=1

if I=1

if O=1

TCP checksum

Figure 5. Header of a COMPRESSED_TCP packet

 E[P]: The expected value of the TCP payload, which
depends on the application. It must be taken into
account that ACK packets without payload can also
be compressed, so they will also be considered in the
calculation of the expected value of the payload, with
a value of 0. This will make the calculations depend
on the TCP implementation and parameters of the
game server and the machine of the player.

 E[k]: The average number of native packets included
into a multiplexed one.

 E[RH]: The expected value of the reduced header.
We will calculate it for the studied application in the
next section.

The expected size in bytes of native and multiplexed
packets arrived in a period will respectively be:

 bytesnative = E[k] (NH + E[P]) (1)

 bytesmux = CH + E[k] (MH + E[RH] + E[P]) (2)

As a consequence, the bandwidth saving (BWS) can be
obtained as:

BWS = 1 -
periodbytes

periodbytes

native

mux

/
/ =

 =1 -
])[]([PENHkE

CH

-
][

][][

PENH
PERHEMH

 (3)

The second term is caused by the sharing of the common
header, and it is reduced as the number of multiplexed
packets grows. The third term represents the relationship
between compressed and native headers of each packet. It
will have a fixed value for each title, so an asymptote for the
maximum bandwidth saving will appear.

IV. TEST METHODOLOGY AND RESULTS
In the tests, we have mainly used World of Warcraft,

because of the next reasons: first, it is the most popular
MMORPG; second, its traffic behavior is typical of this
genre; and third, it has been largely studied in the literature
[5], [14], and a MOS model has even been developed for it
[22].

Header compression and multiplexing can be seen as
independent processes, i.e. a flow can be compressed without
using multiplexing, and also many native flows can be
multiplexed without considering header compression. In this
section we will first study the behavior of the header
compression algorithm, using real traces of the application
under test. Next, the simulation method used for obtaining
the multiplexed traffic traces will be summarized. Finally, the
results will be presented.

A. Behavior of the Compression Algorithm
In this subsection, a statistical distribution for the reduced

header size will be obtained, allowing us to calculate E[RH].
Traffic traces of the game, obtained from real parties
performed in our laboratory, have been used in order to
obtain the model. We have used a wired connection with a
very low packet loss rate, from a Windows 7 64 bits client, to

Blizzard’s servers 2 , and captured 4,000 packets on each
direction. The behavior of the header fields that are not the
same for every packet has been observed and characterized
so as to obtain the probability of having each one of the
possible header sizes:

 R-octet: It will always be set to 0 for the studied
application.

 Urgent pointer (U): It is always set to 0, so it will never
be present.

 Δ window (W): Taking into account that the window size
can be increased or reduced, its variation has to be
between -127 and 128 in order to be suitable to be
expressed in 8 bits. This depends on the TCP stack of the
machine of the player. When 8 bits do not suffice, three
bytes have to be sent.

 Δ ack (A): Its original size is 32 bits, so it may be sent
using 5 bytes (including the one of zeros), but in most
cases it can be compressed to 8 bits or even avoided.

 Δ sequence (S): Its behavior is similar to the one of the A
field.

 Δ IPID (I): It increases by one with respect to the
previous packet, so we can use a single byte to represent
it.

Some fields present a different behavior for client-to-
server and server-to-client traffic. The behavior has been
summarized in Table I, which includes the obtained
percentages for W, A and S fields. We can observe that
defining these fields as random is not interesting: as an
example, for S field, we have two options: if we define it as
random, we will always need 4 bytes. If not, we will use a
single byte when possible, or five bytes in other case. If we
look at the average values obtained, it is better to do it the
second way, as the percentages of having no change or a
single-byte one are high.

As a result, the header size for client-to-server packets
will range from 4 to 14 bytes, whereas server-to-client ones
vary from 4 to 11 bytes. As the maximum size of the
compressed header is 14 bytes, we could compress headers

TABLE I. BEHAVIOR OF THE HEADER FIELDS

client to server

field no
change 8 bits full average

number of bits

W 17.58 % 62.24 % 20.18 % 1.224

A 17.41 % 50.91 % 31.68 % 2.093

S 59.47 % 40.53 % 0 % 0.405

server to client

field no
change 8 bits full average

number of bits

W 100 % 0 % 0 % 0

A 65.55 % 34.45 % 0 % 0.341

S 20.56 % 48.38 % 31.06 % 2.034

2 Although some private servers (e.g. TrinityCore) have been
developed for World or Warcraft, they are unofficial and based on
reverse engineering.

0
5

10
15
20
25
30
35
40

4 5 6 7 8 9 10 11 12 13 14

Fr
eq

ue
nc

y
(%

)

Header size (bytes)

Client-to-server histogram

(a)

0
5

10
15
20
25
30
35
40

4 5 6 7 8 9 10 11 12 13 14

Fr
eq

ue
nc

y
(%

)

Header size (bytes)

Server-to-client histogram

(b)

Figure 6. Header size distribution of the compressed traffic.

even if only one packet has arrived, as the addition of the
common header plus the compressed one will have an upper
bound of 39 bytes. The obtained percentages for each header
size are presented in Fig. 6. These values will be used to
calculate the size of the compressed headers in subsequent
simulations. The expected size of the reduced header is 8.72
bytes for client-to-server packets and 7.37 bytes for server-
to-client ones. Taking into account that the original TCP/IP
header uses 40 bytes, it can be observed that the saving is
significant.

Once the expected values for the compressed header sizes
have been obtained, we are now able to present some
numerical results (Table II) of the bandwidth saving
asymptote, as obtained in (3). In order to get a more general
idea of the savings which can be obtained for different
games, we will calculate the value or the asymptote not only
for World of Warcraft (WoW), but also for two more
MMORPGs: ShenZhou Online [7], by UserJoy Technology;
and Runes of Magic (RoM), by Runewalker Entertainment3.
Assuming that we are using the same TCP implementation,
we can use the calculated value of E[RH] for the three games.

It can be observed that the bandwidth saving is significant
for client-to-server traffics, whereas it is lower for server-to-
client ones. Concretely, in the case of client-to-server traffic
of World of Warcraft, the maximum saving is roughly 60
percent of the bandwidth. On the other hand, the server-to-
client saving for this game is very small, because of the big
size of the packets. The values for the other games are
roughly 20 percent.

3 The values for this game are based on preliminary measurements
which have been deployed by our group. Although a complete traffic
model has not already been presented, the average packet size can be
easily obtained.

TABLE II. BWR ASYMPTOTE VALUES FOR DIFFERENT GAMES

client to server
game E[P] pps max. saving

WoW 8.74 9.51 60.07 %

ShenZhou 25 8 45.1 %

RoM 33 4.17 40.1 %

server to client
game E[P] pps max. saving

WoW 314 6.05 8.65 %

ShenZhou 114 8 19.88 %

RoM 99 5.17 22 %

B. Obtaining of Traffic Traces
Once the header compression algorithm has been

statistically characterized, Matlab simulations have been
performed so as to obtain packet sizes and packet departure
times of native and multiplexed flows. The process can be
divided into three stages (Fig. 7), which we will next explain.

1) Traffic Generation: A model for the traffic of World
of Warcraft was developed in [5], using real traces obtained
in real Internet accesses, and also using the traffic generated
during one week in a mobile core network. Inter-packet time
was modeled by a joint distribution of three uniformly
distributed variables. The size of the APDU (Application
Protocol Data Unit) was modelled using a Weibull
distribution for the downlik, and three possible sizes at the
uplink. For the obtaining of this model, the authors first
removed the ACK packets having no payload, which were
56% of the uplink packets and 28% of the downlink ones. It
must be taken into account that the game also sends ACKs
in packets with payload.

We have used Matlab to generate traffic traces for
different numbers of players (the number of packets
generated is the product of 5,000 and the number of players),
using this model in three steps:

 The APDU and inter-packet times are generated.

 If the APDU is bigger than the MTU, it is divided into
a number of packets, which are sent in a burst.

 TCP ACK packets without payload are added, using
the rates reported in the model, and the correspondent
inter-packet time distribution.

2) Compression of the Flows: IPHC algorithm, which
has been explained above, is applied to each traffic flow,
using the statistics obtained in the previous subsection.
Although packets from different players are included into
the same multiplexed bundle, IPHC is separately applied to
each flow. The reason for this is that there is a context that is
used to compress each flow.

3) Multiplexing and Tunneling: A policy based on a
period is used, as shown in Fig. 4. All the packets that arrive
during a period are multiplexed together, despite the flow
they belong. A threshold of 1,350 bytes is set so as to avoid
multiplexed packets bigger than the MTU.

Player 1

Player 2

Player N

Synthetic
traces

Compressed
traces

Player 1

Player 2

Player N

Player 1 to N

Multiplexed,
compressed and

tunneled

period

... ...

Compression Multiplexing and
tunneling

Theoretical
model

Generation

Figure 7. Stages of traffic generation

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400

nu
m

be
r o

f p
ac

ke
ts

size (bytes)

Packet size histogram 100 players, PE=60ms

(a)

0

20

40

60

80

100

10 20 30 40 50 60

nu
m

be
r o

f p
ac

ke
ts

time (ms)

Inter-packet time histogram 100 players, PE=60ms

(b)

Figure 8. Multiplexed traffic: a) packet size; b) inter-packet time
histogram. A peak of 7,462 packets in 60ms has been cut for clarity.

Fig. 8 shows packet size (a) and inter-packet time (b)
histograms for the multiplexed traffic of 100 players using a
period of 60 ms. It can be observed that the method increases
packet size, presenting a peak above the threshold of 1,350
bytes. Regarding inter-packet time, there is a peak of 7,462
packets in 60 ms, which has been cut for clarity. This means
that many periods last 60 ms.

C. Results
In this subsection we present the results, mainly in terms of
bandwidth saving and packets per second. We have seen that
client-to-server savings are the highest ones, so we mainly
study this traffic. Fig. 9 shows the bandwidth saving for
different numbers of players, with a period ranging from 10
to 100 ms. We can observe that the curves present an
asymptote around 60 %, as expected. If the number of
players is small, a period of 50 ms has to be used so as to
obtain bandwidth savings above 50 %. Nevertheless, a saving
of 25 % can be easily achieved, using a tiny period of 10 ms.
On the other hand, when a big number of players’ traffic is
multiplexed, bandwidth savings of about 50 % can be
obtained even for very small values of the period. Fig. 10
presents the packets per second, which can be reduced from
900 to 10, which is the inverse of the multiplexing period.

0%

10%

20%

30%

40%

50%

60%

70%

10 20 30 40 50 60 70 80 90 100

B
S

period (ms)

Bandwidth Saving

100 players

50 players

20 players

10 players

Figure 9. Bandwidth saving for client-to-server traffic of World of
Warcraft.

0

100

200

300

400

500

600

700

800

900

1000

native 10 20 30 40 50 60 70 80 90 100

period (ms)

Packets per second
100 players
50 players
20 players
10 players

Figure 10. Packets per second for client-to-server traffic of World of
Warcraft.

If we compare the results with the ones obtained using
FPS traffic [12], we can see that bandwidth savings can be
obtained more easily with MMORPGs, due to the higher
compression level of the headers, and also to the presence of
TCP ACK packets without payload, in which header
compression is directly translated into size reduction.
Regarding the number of players, it is possible to have higher
numbers, as in these games the scenario is shared by
thousands of them. But we have to study the network
impairments, which are the counterpart of the multiplexing
method, i.e., the added delays, and the jitter, since a packet
that arrives at the beginning of the period will be delayed
more than a packet arriving at the end.

In order to make sure of not harming players’ experience,
we have used a subjective quality estimator [22], to build a
graph (Fig. 11) using network delays of 20, 40 and 100 ms,
with a stdev of 10 ms. These can be considered typical
Internet delays for different intra-region or inter-region
scenarios [25].

The impairments of multiplexing are added to the delay
and jitter of the network. It can be observed that for small
network delays, MOS values above 3.5 can be easily
achieved. But if the delay is 100 ms, then the period has to be
maintained under 50 ms, in order to grant a good user’s
experience. We see that the players of MMORPGs can
tolerate longer delays than FPS’s ones, as the interactivity of
the game is smaller.

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90 100

M
O

S

period (ms)

MOS delay=20ms

delay=40ms

delay=100ms

Figure 11. MOS calculated with different network delays and a stdev of 10
ms

V. CONCLUSIONS
A multiplexing and header compression method has been

applied to the traffic of MMORPGs, in scenarios where the
flows of a number of players share the same path. The
method has been analyzed, showing that there is an
asymptote that establishes an upper bound for the bandwidth
saving.

The behavior of the header compression algorithm has
been studied using real traces of the concrete application,
obtaining a statistical characterization of its performance.
With these results, simulations using a statistical model of a
commercial game have been conducted in order to obtain the
average bandwidth saving as a function of the number of
players and the multiplexing period. The obtained savings are
significant, and can be about 60 percent. An important
reduction in the amount of packets per second can also be
observed. Finally, by the use of a subjective quality
estimator, it has been shown that the system is able to
maintain an acceptable experienced quality. Further research
could be performed, using the traffic and quality models of
other games, in order to build a comparative study between
different titles. Different network scenarios including delay
and packet loss would also have to be considered, in order to
test the effect of these network impairments on the subjective
quality of the gamers.

REFERENCES

[1] M. Suznjevic, O. Dobrijevic, M. Matijasevic: MMORPG Player
actions: Network performance, session patterns and latency
requirements analysis. Multimedia Tools Appl. 45, 1-3, pp. 191-214
(2009)

[2] M. Mauve, S. Fischer, J. Widmer: A Generic Proxy System for
Networked Computer Games. In Proceedings of the 1st workshop on
Network and system support for games (NetGames’02), pp. 25--28.
ACM, New York (2002)

[3] C. Chambers, W. Feng, S. Sahu, D. Saha: Measurement-based
Characterization of a Collection of On-line Games. In Proceedings of
the 5th ACM SIGCOM conference on Internet Measurement
(IMC’05). USENIX Association, Berkeley (2005)

[4] G. Huang, M. Ye, L. Cheng,: Modeling System Performance in
MMORPG. In: Globecom 2004 Workshop, pages 512-518. IEEE
(2004)

[5] P. Svoboda, W. Karner, M. Rupp, M.: Traffic Analysis and Modeling
for World of Warcraft. In: Proc. ICC, Urbana-Champaign, IL, USA
(2007)

[6] Oliveira, M., Henderson, T.: What online gamers really think of the
Internet?. In: Proc. 2nd workshop on Network and system support for
games (NetGames '03). ACM, New York, NY, USA, 185-193 (2003)

[7] K. Chen, P. Huang, C. Lei: Game traffic analysis: An MMORPG
perspective. In Proceedings of the international workshop on Network
and operating systems support for digital audio and video
(NOSSDAV’05), pp. 19-24. ACM, New York (2005)

[8] S. Zander, G. Armitage: Empirically Measuring the QoS Sensitivity
of Interactive Online Game Players. Australian Telecommunications
Networks & Applications Conference (ATNAC2004), Sydney,
Australia, December (2004)

[9] Ubicom White Paper.: OPScore, or Online Playability Score: A
Metric for Playability of Online Games with Network Impairments
(2005)

[10] B. Thompson, T. Koren, D. Wing. RFC 4170: Tunneling Multiplexed
Compressed RTP (TCRTP), November (2005)

[11] J. Saldana, J. Fernández-Navajas, J. Ruiz-Mas, J. Murillo, E. Viruete
Navarro, J. I. Aznar: Evaluating the influence of multiplexing
schemes and buffer implementation on perceived VoIP conversation
quality, Computer Networks, vol. 56, no. 7, pp. 1893-1919 (2012)

[12] J. Saldana, J. Fernandez-Navajas, J. Ruiz-Mas, J.I. Aznar, E. Viruete,
L. Casadesus: First Person Shooters: Can a Smarter Network Save
Bandwidth without Annoying the Players?. IEEE Communications
Magazine, vol. 49, no.11, pp. 190-198 (2011)

[13] D. Bauer, S. Rooney, P. Scotton: Network Infrastructure for
Massively Distributed Games. In Proceedings 1st workshop on
Network and system support for games (NetGames’02), pp. 36-43.
ACM, New York (2002)

[14] J.L. Miller, J. Crowcroft: The Near-Term Feasibility of P2P MMOGs.
In: Proc. International Workshop on Network and Systems Support
for Games (NetGames) (2010)

[15] V. Jacobson: RFC 1144: Compressing TCP/IP Headers for Low-
Speed Serial Links (1990)

[16] M. Degermark, B. Nordgren, D. Pink: RFC 2507: IP Header
Compression (1999)

[17] S. Casner V. Jacobson: RFC 2508. Compressing IP/UDP/RTP
Headers for Low-Speed Serial Links (1999)

[18] T. Koren, S. Casner, J. Geevarghese, B. Thompson, P. Ruddy: RFC
3545. Enhanced Compressed RTP (CRTP) for Links with High Delay,
Packet Loss and Reordering (2003)

[19] K. Sandlund, G. Pelletier, L-E. Jonsson: RFC 5795. The RObust
Header Compression (ROHC) Framework (2010)

[20] S. Ratti, B. Hariri, S. Shirmohammadi, A Survey of First-Person
Shooter Gaming Traffic on the Internet, IEEE Internet Computing, pp.
60-69, September/October (2010)

[21] J.A. Bergstra, C.A. Middelburg: ITU-T Recommendation G.107: The
E-Model, a computational model for use in transmission planning
(2003)

[22] M. Ries, P. Svoboda, M. Rupp: Empirical study of subjective quality
for massive multiplayer games. In: Proc. 15th International
Conference on Systems, Signals and Image Processing, IWSSIP 2008.
Bratislava, Slovakia (2008)

[23] J. Saldana, J. Fernandez-Navajas, J. Ruiz-Mas, J.I. Aznar, L.
Casadesus, E. Viruete: Comparative of Multiplexing Policies for
Online Gaming in terms of QoS Parameters. IEEE Communications
Letters, vol.15, no.10, pp.1132-1135 (2011)

[24] E. Ertekin, C. Christou: Internet protocol header compression, robust
header compression, and their applicability in the global information
grid. IEEE Communications Magazine, vol. 42, pp. 106-116 (2004)

[25] AT&T Global IP Network (2011), http://ipnetwork.bgtmo.ip.att.net
/pws/global_network_avgs.html

